烤煙煙葉含梗率對(duì)其復(fù)烤加工出片率影響的模擬
發(fā)布時(shí)間:2019-08-26 來(lái)源: 短文摘抄 點(diǎn)擊:
摘 要:為及時(shí)準(zhǔn)確預(yù)測(cè)煙草工業(yè)所調(diào)撥煙葉的出片率,利用2013—2015年畢節(jié)大方基地云煙87不同等級(jí)煙葉的含梗率數(shù)據(jù)進(jìn)行聚類(lèi)分析,劃分為6類(lèi)。在此基礎(chǔ)上,通過(guò)調(diào)撥煙葉等級(jí)平均含梗率和類(lèi)群平均含梗率作為自變量,利用2013—2014年的加工數(shù)據(jù)統(tǒng)計(jì)建模,探究調(diào)撥烤煙含梗率對(duì)加工出片率的影響,并用2015年的加工數(shù)據(jù)資料對(duì)模型進(jìn)行檢驗(yàn)。結(jié)果表明:烤煙出片率隨煙葉收購(gòu)等級(jí)含梗率呈logistic曲線變化,且等級(jí)含梗率與類(lèi)群含梗率預(yù)測(cè)模型的RMSE均較小,分別為0.621%和0.649%,說(shuō)明類(lèi)群含梗率模型具有較好的描述性和預(yù)測(cè)性;同時(shí),江蘇中煙在大方基地主要調(diào)撥等級(jí)X2F、C3F、B2F的期望出片率分別為63.40%、65.58%、68.60%。
關(guān)鍵詞:烤煙;含梗率;聚類(lèi)分析;出片率;模擬模型
中圖分類(lèi)號(hào):TS44+3文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1006-060X(2019)01-0078-81
Abstract: In order to predict the strips yield of tobacco leaves allocated by the tobacco industry in time and accurately, the stem content data of Yunyan 87 tobacco leaves of different grades in Bijie Dafang Base from 2013 to 2015 were analyzed through cluster analysis, which were divided into six categories. On this basis, use the average stem content of tobacco grades and the average stem content of tobacco groups as independent variables, this paper attempts to establish a model based on the processing data statistics of 2013-2014 by allocating the average stem content of tobacco grades and the average stem content of tobacco groups as independent variables, to explore the effect of allocating the stem content of flue-cured tobacco on strips yield, and to test the model with the processing data of 2015. The results showed that the strips yield of flue-cured tobacco varied with the stem content of tobacco purchasing grade in a logistic curve, and the RMSE of the prediction models of grade stem content and group stem content were smaller, 0.621% and 0.649% respectively, indicating that the model of group stem content had better descriptiveness and predictability. At the same time, the expected strips yield of X2F, C3F and B2F are 63.40%, 65.58% and 68.60% respectively.
Key words: flue-cured tobacco; stem rate; cluster analysis; strips yield; simulation model
對(duì)于卷煙工業(yè)企業(yè)而言,調(diào)撥烤煙的收購(gòu)質(zhì)量主要從收購(gòu)品種、等級(jí)純度和等級(jí)合格率三個(gè)方面評(píng)價(jià);乜緹熎贩N與卷煙品牌需求有關(guān),是提高煙葉質(zhì)量和產(chǎn)量的內(nèi)因[1],生態(tài)氣候條件能引起煙草生長(zhǎng)發(fā)育的改變,是影響煙葉質(zhì)量和產(chǎn)量的外因[2-3],而等級(jí)純度和等級(jí)合格率的高低由混有不同部位等級(jí)煙葉的多少?zèng)Q定,與收購(gòu)眼光有關(guān)。不同品種、不同生態(tài)條件、不同部位等級(jí)煙葉的物理特性不同[4],物理特性不僅與煙葉內(nèi)在質(zhì)量密切相關(guān),部分指標(biāo)如含梗率還是影響煙葉加工出片率的關(guān)鍵指標(biāo),直接影響到卷煙制造過(guò)程、產(chǎn)品風(fēng)格及其他經(jīng)濟(jì)因素[5-7],因此烤煙復(fù)烤加工特性很大程度上受烤煙收購(gòu)質(zhì)量的影響。為此,江蘇中煙根據(jù)“定區(qū)域,定品種,定品牌”的要求,立足卷煙配方需求,同時(shí)兼顧煙農(nóng)的利益,通過(guò)品種篩選試驗(yàn)[8],研究大方基地最適宜品牌發(fā)展的烤煙品種,研究發(fā)現(xiàn)大方基地最適宜種植的烤煙品種為云煙87,并從2013年開(kāi)始大方基地統(tǒng)一種植云煙87,既滿(mǎn)足了品牌發(fā)展,又促進(jìn)了煙農(nóng)增收,同時(shí)為更好地挖掘特定區(qū)域、特定品種的加工特性奠定了基礎(chǔ)。
綜上所述,在品種滿(mǎn)足需求的基礎(chǔ)上,收購(gòu)質(zhì)量主要與等級(jí)合格率和等級(jí)純度有關(guān),而不同部位等級(jí)煙葉的含梗率不同[9],因此調(diào)撥烤煙的含梗率必然影響加工出片率。筆者試圖通過(guò)調(diào)撥烤煙的平均含梗率預(yù)測(cè)出片率,以期為復(fù)烤加工過(guò)程管理提供有益參考,同時(shí)為卷煙工業(yè)降本增效、成品原料使用決策提供
依據(jù)。
1 數(shù)據(jù)來(lái)源與建模方法
1.1 數(shù)據(jù)來(lái)源
含梗率、等級(jí)合格率和出片率的數(shù)據(jù)來(lái)源于江蘇中煙工業(yè)有限責(zé)任公司。檢測(cè)樣品為2013年—2015處畢節(jié)大方基地云煙87的5個(gè)加工批次等級(jí)煙葉,加
相關(guān)熱詞搜索:烤煙 煙葉 對(duì)其 模擬 加工
熱點(diǎn)文章閱讀